Іванов Є.А.

Типи іонізуючого випромінювання. Радіоактивний розпад

1.2. Характеристика іонізуючого випромінювання

Типи іонізуючого випромінювання. Радіоекологія досліджує вплив на екосистеми різних рівнів радіоактивного іонізуючого випромінювання – електромагнітних хвиль, потоків заряджених елементарних частинок атома (електронів, протонів, нейтронів, позитронів) та прискорених ядер хімічних елементів. Ці типи іонізуючого випромінювання відрізняються за властивостями, що визначають характер їх взаємодії з компонентами природного середовища.

До іонізуючого випромінювання відносять радіоактивне випромінювання різних типів, які за час проходження крізь матерію, здатні іонізувати або збуджувати атоми і молекули її хімічних елементів. Розрізняють два типи іонізуючого випромінювання – електромагнітне (некорпускулярне) і корпускулярне (Гродзинський, 2000).

Електромагнітне випромінювання являє собою сукупність змінних станів електричного й магнітного полів, які поширюються довкіллям у вигляді хвиль. До електромагнітного випромінювання відносять ультрафіолетові промені з довжиною хвилі (λ) від 400 до 50 нм, рентгенівські промені (λ від 50 до 0,01 нм) та гамма-випромінювання (λ менш як 0,01 нм).

Ультрафіолетові промені мають природне походження і надходять на земну поверхню від Сонця із космічного простору. Вони шкідливі для живих складових екосистеми. Останнім часом потужність ультрафіолетового випромінювання значно збільшилася внаслідок зменшення щільності захисного озонового шару Землі і виникнення «озонових дір». Рентгенівські промені виникають штучно в результаті гальмування заряджених частинок в електричному полі, яке й генерує це електромагнітне випромінювання. Для генерації рентгенівського випромінювання застосовують поширені у медицині рентгенівські апарати.

Корпускулярне випромінювання – це потік частинок, які мають ненульове значення маси спокою (Бак, Александер, 1963). До цього типу випромінювання відносять потоки найменших частинок атома (електронів, протонів), ядер різних хімічних елементів (гелію, кисню та ін.), а також нейтронів – елементарних незаряджених частинок.

Потоки нейтронів одержують в ядерних реакторах і у спеціальних нейтронних генераторах на основі ланцюгових ядерних реакцій, які є важливою складовою випромінювання, що супроводжує будь-який атомний вибух. Особливості альфа-, бета- і електромагнітного гамма-випромінювання розглядатимемо під час вивчення властивостей радіоактивного розпаду.

Головним об'єктом радіоекологічних досліджень, як уже зазначалось, є атом, точніше, – його будова. Атом радіоактивного елемента за будовою схожий на атоми інших хімічних елементів. Загалом він нагадує Сонячну систему у мініатюрі: довкола маленького ядра по орбітах рухаються «планети» – електрони. Ядро, як правило, складається з менших частинок, щільно з'єднаних між собою. Деякі з цих частинок, які мають позитивний заряд, називаються протонами. Число протонів у ядрі визначає вид хімічного елементу, до якого відноситься цей атом. Наприклад, ядро атома водню має лише один протон, атома кисню – 8, а урану – 92. У кожному атомі кількість електронів на орбітах дорівнює кількості протонів у ядрі. Електрони мають негативні заряди, які рівні зарядам протонів, отож у цілому заряд атома стабільного хімічного елементу є нейтральним.

В ядрі, як правило, присутні й частинки відмінного типу, які називаються нейтронами, оскільки вони електрично нейтральні. Ядра атомів будь-якого хімічного елементу володіють однаковою кількістю протонів, проте кількість нейтронів може бути різною. Атоми, які мають ядра з однаковим числом протонів, але відрізняються кількістю нейтронів, відносять до різновидів одного й того самого хімічного елементу. Їх називають ізотопами цього елементу. Щоб їх виокремити, до символу хімічного елемента приписують число, яке дорівнює сумі всіх частинок у ядрі цього ізотопу. Наприклад, різні члени радіоактивного ряду розпаду урану: уран-238 (238U) має 92 протони і 146 нейтронів, а уран-235 (235U) має також 92 протони, але лише 143 нейтрони.

 

Радіоактивний розпад. Ядра ізотопів певних хімічних елементів утворюють групу нуклідів. Деякі нукліди зберігають стабільний стан, тобто без впливу зовнішньої дії вони ніколи не зазнають перетворень. Однак більшість нуклідів є нестабільними і періодично перетворюються в інші нукліди. Вони мають назву радіонукліди. Процес перетворення радіонуклідів називається радіоактивним розпадом.

Для прикладу розглянемо особливості процесу радіоактивного розпаду атома 238U, в ядрі якого протони і нейтрони ледве утримуються силами внутрішнього зчеплення. Час від часу від атома 238U відривається компактна група з чотирьох частинок: двох протонів і двох нейтронів. Таку групу називають α-частинкою, а процес відокремлення альфа-розпадом або альфа-випромінюванням.

При цьому 238U перетворюється у торій-234 (234Th), проте й він нестабільний. Однак трансформація 234Th відбувається дещо інакше: один з нейтронів ядра змінюється на протон. Водночас один електрон втрачає пару і вилітає з атома. Такий процес називають бета-розпадом або бета-випромінюванням. Розрізняють електронний і позитронний бета-розпади. Під час таких розпадів виникає ядро нового хімічного елементу, який займає відповідно попереднє або наступне місце у таблиці Менделєєва. У нашому випадку – це протактиній-234 (234Ра).

Кожний альфа- або бета-розпад супроводжується звільненням енергії, яка передається далі у вигляді короткохвильового електромагнітного випромінювання. Нестабільний радіонуклід стає настільки збудженим, що викидає порцію чистої енергії і при цьому не втрачаються будь-які його частинки. Спостерігається лише виділення γ-фотона у процесі гамма-випромінювання. Далі з 238U відбуваються інші перетворення, що супроводжуються альфа-, бета- і гамма-випромінюванням. Весь цей довгий ланцюг радіоактивних перетворень закінчується стабільним нуклідом свинцю.

Деякі радіонукліди перебувають у нестабільному стані, однак по-різному. Наприклад, 234Ра розпадається майже миттєво, а 238U, навпаки, дуже повільно. Його період напіврозпаду, тобто час, за який половина атомів 238U перетворяться у 234Th, становить близько 4,5 млрд років.

Інтенсивність радіоактивного розпаду або кількість альфа-, бета- й гамма-розпадів упродовж секунди називають радіоактивністю. Одиницею вимірювання радіоактивності в системі СІ є бекерель (Бк), що дорівнює одному розпаду за секунду. Досить часто використовують позасистемну одиницю кюрі (Кі), яка відповідає активності 1 г радону-226 (226Ra) (1 Кі = 3,7 × 1010 Бк).

Характерним показником радіаційної небезпеки контрольованої речовини чи матеріалу є питома радіоактивність. Цей параметр використовують як головний критерій забрудненості продуктів харчування, питної води, ґрунту, будівельних матеріалів, сировини і продукції промислових підприємств. Виділяють масову та об'ємну питому радіоактивность, які відповідно вимірюють в Бк/кг (Кі/кг) та Бк/м3 (Кі/м3).